初中生学习辅导(第九十三节)
初中生学习辅导(第九十三节)
第九十三节:建立、发展和完善数学认知结构
数学学习,就是把数学知识结构(指教材)经过积极主动的思维活动,转化为头脑里的数学认知结构。在数学学科的学习中,数学认知结构的建立、发展和完善,处于核心地位。那么,作为家长,该怎样引导上初中的孩子建立、发展和完善数学认知结构呢?
(1)打好基础,建立优良的数学认知结构学习一门数学的新课程,或学习某一课程中与前面知识没有多大联系的新课题时,开始都会碰到一系列新的概念、公理、思想方法,以及一些简单的、基础的定理、公式等,这些内容不可能被原有的认知结构所同化,只能从实例、模型或已有经验中抽象概括,形成新的概念、公理、方法等,从而建立起一个新的数学认知结构。例如,平面几何入门阶段的学习,就处于建立新的数学认知结构的过程中。这个新建立的数学认知结构,就是今后学习的基础,它的优劣直接影响以后学习的好坏,因此显得十分重要。数学家张广厚曾说过:“我在念一本新书时,开头我特别下工夫,由于开头都是基础的东西,基础的东西往往是容易接受却难理解,特别是高等数学是这样……中学学习也是一样,开头简单,自己认为懂了,实际没懂,不下工夫,过两三个月就吃力了。要入门,就要开头下工夫,我觉得开头的基础要搞扎实。”他这番话,道出了入门阶段学习的重要性,反映了开始时建立优良认知结构的必要。事实上,从学生学习平面几何起始阶段的情况,也可说明这一点。新建立的认知结构是后继学习的基础,它具有较高的抽象、概括水平,所以这些内容虽然简单,但学习的要求却很高,应引起特别注意。尤其是采用公理化方法编写的教材,这一点表现得更为明显。
(2)循序渐进,搞好命题学习,促进认知结构的良好发展数学是一门系统性很强的学科,前后内容紧密相连,一环紧扣一环。在学习时,若对某一环学得不扎实,认识模糊不清,就会直接影响认知结构的良好发展。如果不及时解决,那么继续学习下去就只能是机械学习,这时认知结构中出现的都是一些孤立的“点”,不仅容易遗忘,而且失去应用的价值,结果导致学习的失败。在学习每一个定理、公式时,都要清楚地知道怎样一步步得出结论。运用了哪些概念、公理、定理或公式,使用的是什么方法等等。要知其然还要知其所以然,而不能只记住其条件和结论。命题学习过程是一个积极的思维活动过程,从感知定理的情境(信息输入),接着进入思维(信息加工),即与原有认知结构中适当的知识建立联系,相互作用,进行同化,然后把它纳入原有认知结构(储存),并使原认知结构得到发展。在这个思维活动中,既要理解证明过程,更要从中学习到数学的思想方法和解题途径。这对发展认知结构,具有重要意义。例如,在圆周角定理的证明过程中所体现的分类、化归的方法等,就有积极的作用。因此,那种尽量缩短命题学习的时间加快学习进程的做法,是不可取的。
(3)精炼所学知识,不断完善数学认知结构数学认知结构也有一个形成、发展到完善的过程,它处于不断变化之中。并且,认知结构的大小也是相对的,大可以指整个中学阶段数学认知结构,小可以指某章某节的认知结构,也可以指某部分内容的认知结构。因此,每到一个阶段,就要进行提炼,改善原有认知结构,提高抽象、概括水平,以便有助于今后的学习和应用。通常,阶段复习、学期复习就应起这个作用。数学家华罗庚谈到学习有一个“由薄到厚”和“由厚到薄”的过程。他说:“要真正学会学懂还必须经过‘由厚到薄’的过程,即把那些学到的东西,经过咀嚼、消化,融会贯通,提炼出关键性的问题来……这看起来你得到的东西似乎比以前少了,但实质上经过消化,变成精炼的东西了。”华罗庚在这里特别强调了“由厚到薄”的重要性,反映了改进、完善数学认知结构的重要性。例如,初中学完代数方程后,可以对方程的解法进行整理、提炼,得出基本思想——“转化”、“降次”、“消元”,达到了高度概括、简缩;再由知识“点”、“线”组成知识的“网络”,揭示内在的联系,从而完善了这一部分的认知结构。
如果学习者在学习过程中经常进行这方面的工作,则不仅对数学知识会有更深入的认识,而且还有助于能力的提高与发展。